On the De Giorgi Type Conjecture for an Elliptic System Modeling Phase Separation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The De Giorgi Conjecture on Elliptic Regularization

The statement of Conjecture 1.1 does not specify the convergence notion for u → u nor the solution notion for equation (1.1). We shall tacitly assume in the following that the convergence is (at least) almost everywhere in space and time, that convergence holds (at least) for subsequences, and that equation (1.1) will be solved (at least) in the distributional sense. Along with these provisions...

متن کامل

On a modified conjecture of De Giorgi

We study the Γ -convergence of functionals arising in the Van der Waals-Cahn-Hilliard theory of phase transitions. The corresponding limit is given as the sum of the area and the Willmore functional. The problem under investigation was proposed as modification of a conjecture of De Giorgi and partial results were obtained by several authors. We prove here the modified conjecture in space dimens...

متن کامل

On De Giorgi Conjecture in Dimension

A celebrated conjecture due to De Giorgi states that any bounded solution of the equation ∆u+(1−u2)u = 0 in RN with ∂yN u > 0 must be such that its level sets {u = λ} are all hyperplanes, at least for dimension N ≤ 8. A counterexample for N ≥ 9 has long been believed to exist. Based on a minimal graph Γ which is not a hyperplane, found by Bombieri, De Giorgi and Giusti in RN , N ≥ 9, we prove t...

متن کامل

Phase Transitions, Minimal Surfaces and a Conjecture of De Giorgi

A central problem in the area of PDEs is the study of global solutions, that is solutions defined in the whole space. This problem arises naturally for example when one studies the possible types of behaviors a solution might have at a given point. Focusing near such a point by dilating the picture more and more, we end up with a PDE in the whole space. In other cases we might have a differenti...

متن کامل

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2014

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2013.856916